

Introduction

Existing Structure
Foundations
Floor system
Gravity system
Lateral system

Proposal and Problem Statement
Depth Topic
Breadth Topics
Construction Management
Sustainability

Outline

Structural Redesign
Gravity System
Floor System
Lateral System
Weight Comparison
Seismic Comparison

Construction Management Breadth
Cost Comparison
Schedule Comparison

Conclusions, Acknowledgements, Questions & Comments

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Introduction

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Location:

Wilmington Delaware

Owned and managed by:

Pettinaro Real Estate Development Company

Delivery Method:

Design-Bid-Build

Construction Time:

November 2006 – May 2008

Cost:

\$11.5 Million

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Occupancy:

Upscale Residential Apartment Building (89 Units)

Size:

180,000 Square Feet

Stories:

7 Stories above grade
1 Story partially below grade

Major Building Codes:

IBC and amendments adopted by New Castle County (DE)

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Existing Structure

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

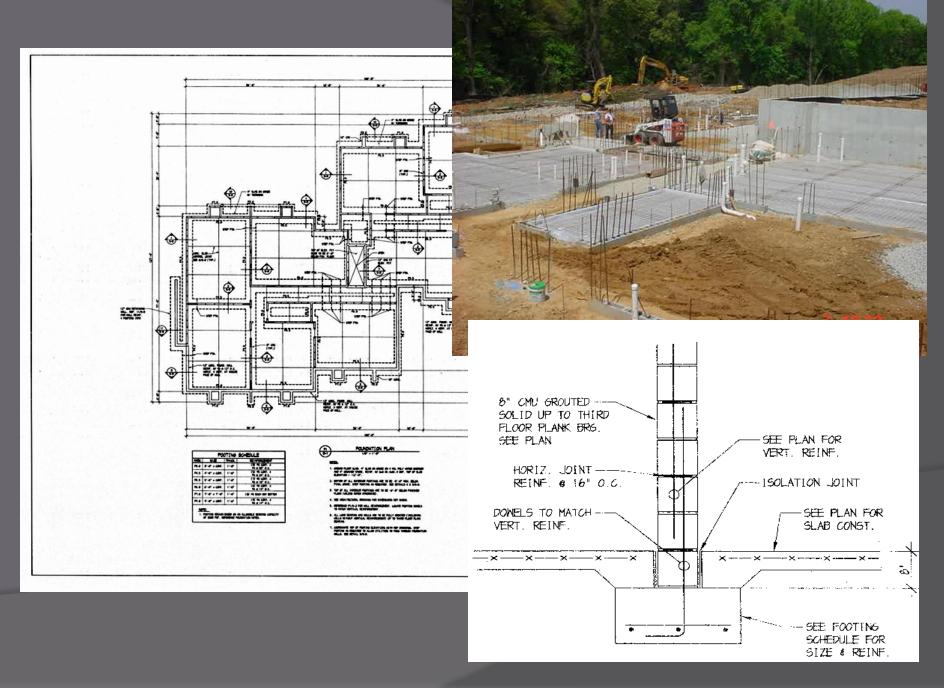
Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments



Foundations:

3000 psf allowable soil bearing capacity

3000 psi concrete spread footings

4 inch thick slab on grade
3500 psi concrete
On 4 inches of crushed stone
6x6 W1.4xW1.4 WWF

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

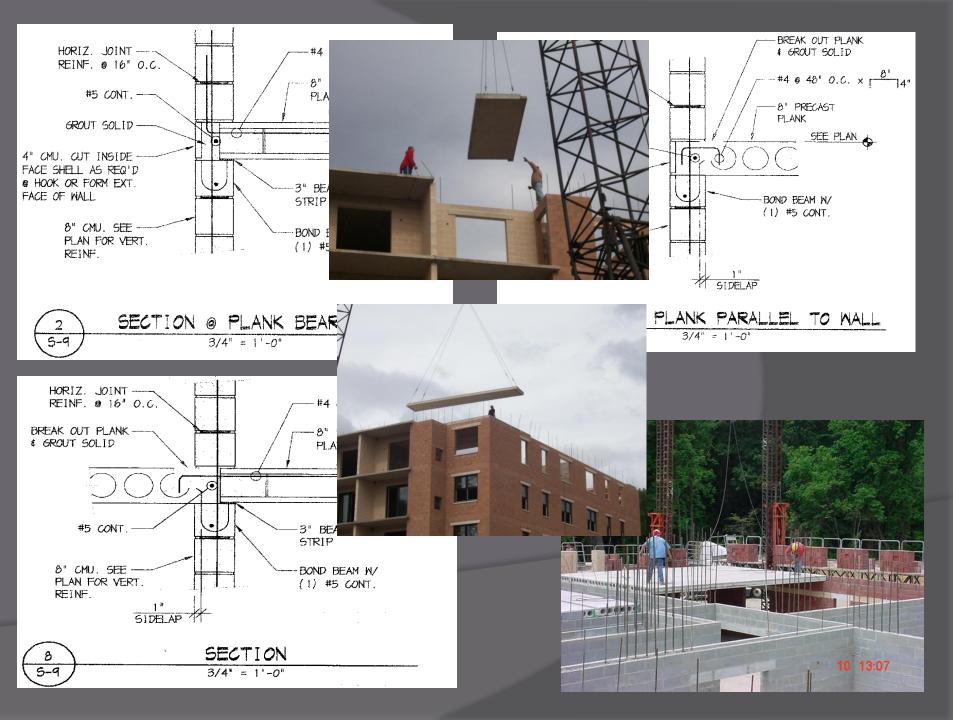
Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments



Floor System:

Precast Hollow Core Plank

Rest on 3 inch bearing plate on CMU bond beam

Tied in with #4 reinforcing bars spaced at 48 inches

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

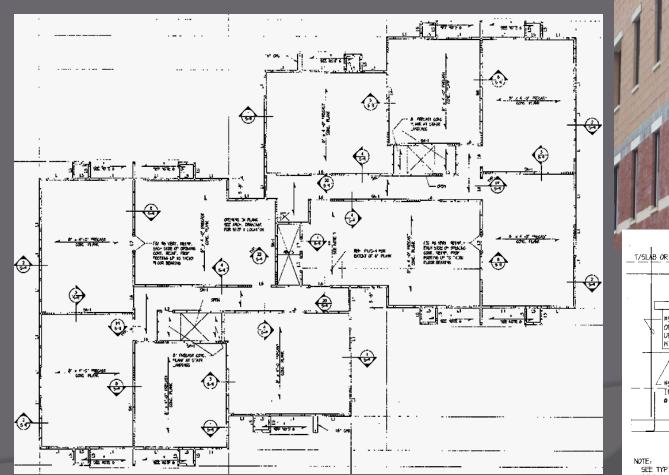
Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments



Gravity System:

8 inch CMU
Decorative CMU on exterior walls

#4 reinforcing bars spaced at 32 or 48 inches (depending on level) in grouted cells

Window and door openings supported by precast lintels

REINF. @ MASONRY WALL OPNGS.

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

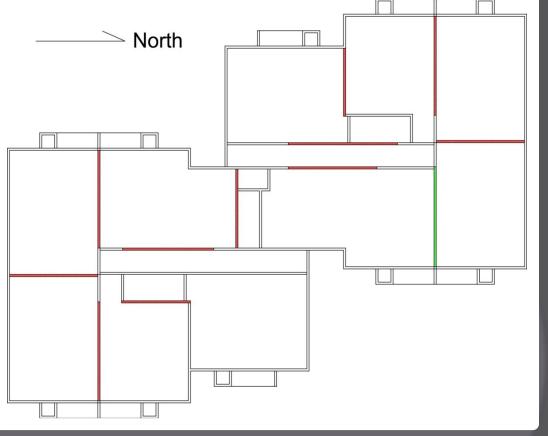
Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments




Lateral System:

8 inch CMU walls

Reinforced cells grouted solid all the way down to foundation

Reinforced according to level and load

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Proposal and Problem Statement

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

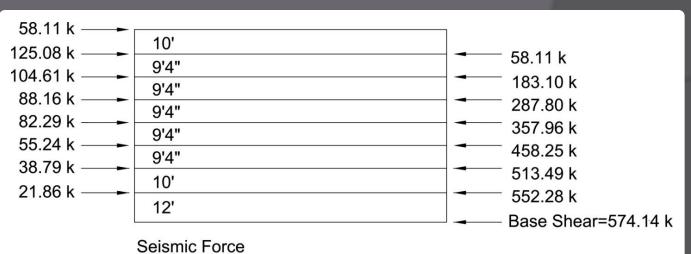
Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments


Problem Statement:

Large building self-weight

Lateral system design controlled by seismic force

Level	Dead Loads
Roof	821.30
7	1788.24
6	1738.89
5	1738.89
4	1738.89
3	1738.89
2	1738.89
1	1788.24
Ground	1685.56
Total Dead Load	14777.80

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Proposed Solution:

Reduce building self-weight

Redesign entire structural system using the Infinity Structural System

Reduce seismic load

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

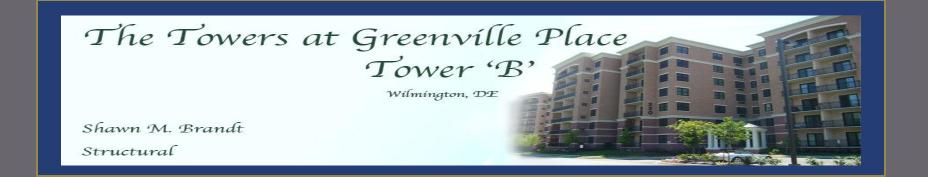
Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison


Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Breadth Topics:

Construction Management
Cost Comparison
Schedule Comparison

Sustainability
Green roof
Rainwater collection

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Depth Topic: Structural Redesign

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Gravity System:

Ground floor structural system would remain similar to existing

"Pre-panelized" metal stud wall system

Additional walls added due to alternative floor system considerations

Studs sized according to manufacturer specs

Level	Floor Height	Total Load per Stud(s) (kips)	Stud Spacing (in)	Stud Type
Roof	-	-	-	-
7	10	1.36	16	600S162-54 33ksi
6	9.33	2.84	16	600S162-54 33ksi
5	9.33	4.32	16	600S162-68 33ksi
4	9.33	5.80	16	600S162-97 33ksi
3	9.33	7.28	16	600S162-97 33ksi
2	9.33	8.76	16	(2) 600S162-97 33ksi
1	10	10.24	16	(2) 600S162-97 33ksi
Ground	12	11.72	-	-

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

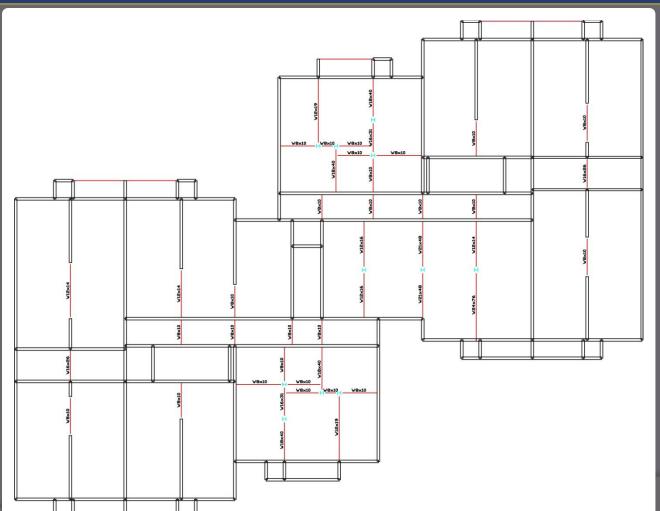
Structural Redesign Gravity System

Floor System

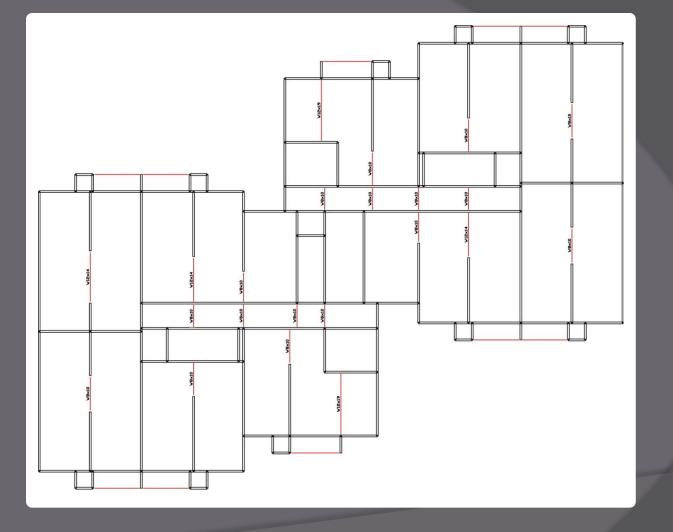
Lateral System

Weight Comparison

Seismic Comparison


Construction Management Breadth

Cost Comparison


Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Ground Level Layout

Typical Level Layout

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

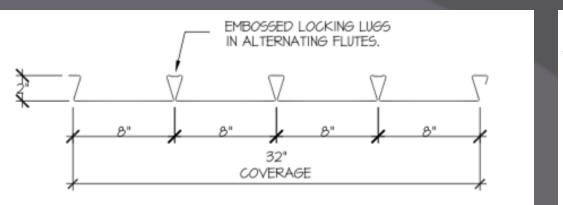
Seismic Comparison

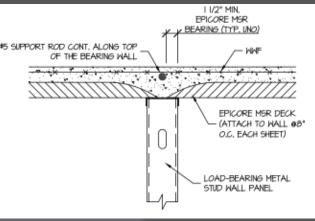
Construction Management Breadth

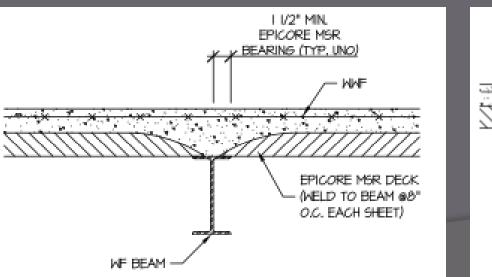
Cost Comparison

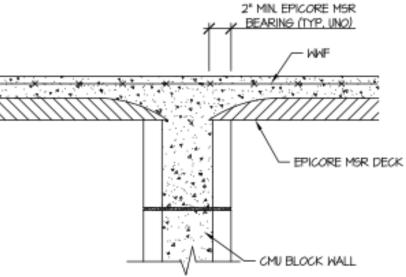
Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments


Floor System:


Slab on deck system
4 inch total system depth


Epicore MSR 20 gage composite deck


Dovetail shaped composite decking flutes provides sufficient reinforcement across spans without need for reinforcing bar

4000 psi concrete

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

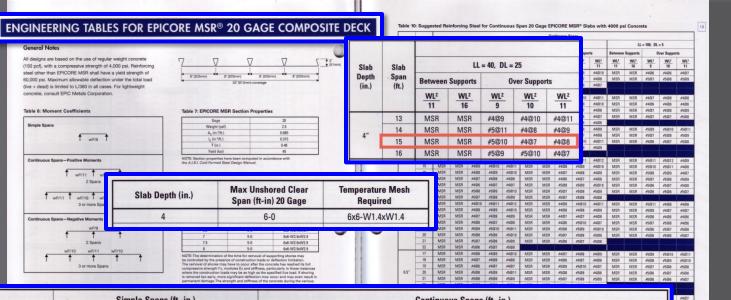
Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments


Floor System:

#4 reinforcing bars spaced at 8 inches over supports

6x6-W1.4xW1.4 WWF

Slab and deck sized from Epicore MSR catalog

Beams and columns sized in RAM Structural System program

		Simple Spans (itiii.)			Continuous Spans (itin.)				
tal Slab pth (in.) LL = 40 psf DL = 25 psf	LL = 50 psf	LL = 40 psf LL = 40 psf DL = 25 psf		LL = 50 psf DL = 25 psf		LL = 100 psf DL = 5 psf			
		DL = 25 pst	DL = 25 psf	interior span	end span	interior span	end span	interior span	end span
4	14-2	13-9	12-10	16-5	16-5	15-11	15-11	14-10	14-10

NOTES for Tables 9 and 10:

1. For simple spans:
a) No reinforcting steel other than EPICORE MSR is required.
2. For continuous spans:
a) Reinforcting steel is required over intentior supports. See Table 10 for support

informing sells if required over limited reports. Sell fails 9 fb for suggested other stats. Table assumes 34° concrete over fire informing sell over appointment of the report of the r

EPIC METALS CORPORATION

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

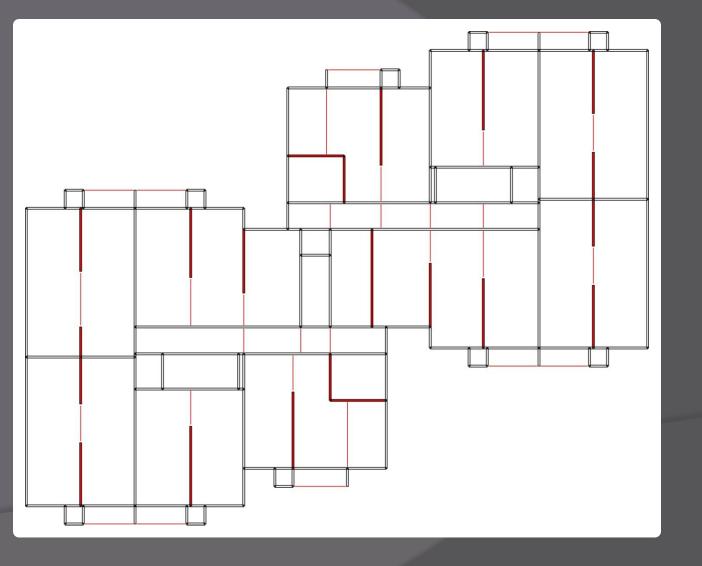
Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison


Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Floor System:

Interior partition walls reassigned as load bearing

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

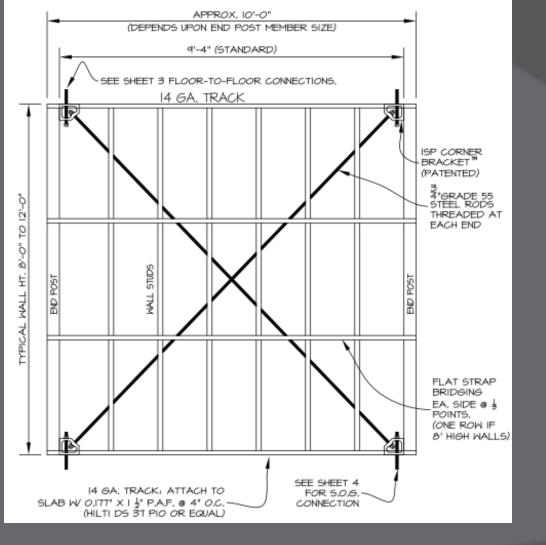
Cost Comparison

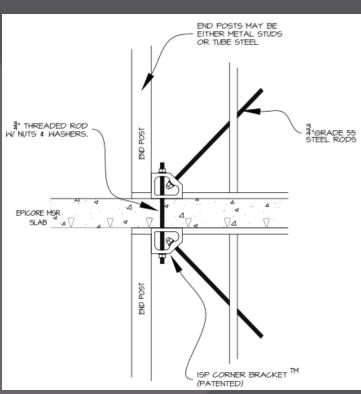
Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Lateral System:

"Infinity Shear Panels" (ISP)

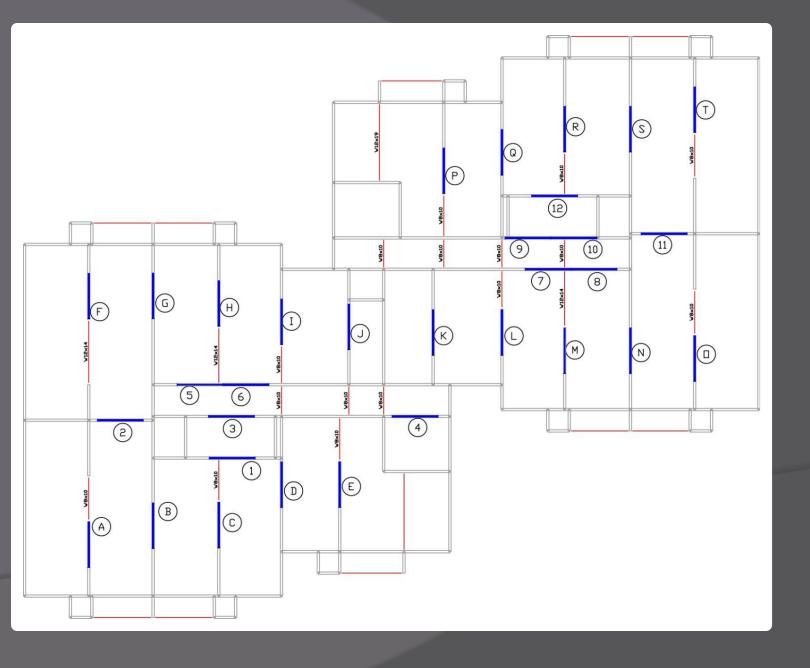

3/4 inch round threaded grade 55 steel rods


10 ft wide panels

Thru-bolted assembly from level to level for continuously braced lateral system

Rods inside wall, no surface bulging

Metal stud size and spacing match gravity system


ISP HEIGHT	ALLOWABLE
8'-0"	9.40k
8'- 6"	9.13K
9'- 0"	8.87K
9'- 6"	8.6IK
10'- 0"	8.36K
10'-6"	8.13K
II'- O"	7.90K
II'- 6"	7.68K
12'- 0"	7.47K
10'- 0" 10'-6" 11'- 0"	8.36K 8.13K 7.90K 7.68K

Introduction **Existing Structure** Foundations Floor system Gravity system Lateral system Proposal and Problem Statement Depth Topic Breadth Topics Construction Management Sustainability **Structural Redesign Gravity System** Floor System Weight Comparison Seismic Comparison Construction Management Breadth Cost Comparison Schedule Comparison Conclusions – Acknowledgements – Questions & Comments

Lateral System:

Shear wall layout

Introduction

Existing Structure

Foundations
Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Weight Comparison:

Level	Dead Loads
Roof	821.30
7	1788.24
6	1738.89
5	1738.89
4	1738.89
3	1738.89
2	1738.89
1	1788.24
Ground	1685.56
otal Dead Load	14777.80

Existing Weight

Level	Dead Loads
Roof	1025.82
7	873.75
6	872.41
5	877.05
4	886.22
3	886.22
2	918.69
1	922.36
Ground	1503.82
Total Dead Load	8766.34

Redesigned Weight (including wet green roof deal load)

Self weight Comparisons				
Existing	14,777.80 Kips			
Redesigned	8,766.34 Kips			
Difference	-6,011.46 Kips			
Percent Reduction	41% Reduction			

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

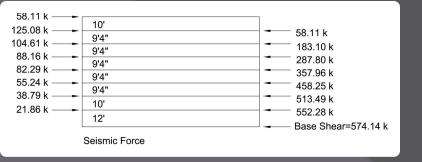
Seismic Comparison

Construction Management Breadth

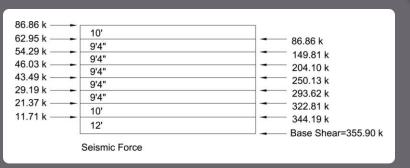
Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments


Seismic Comparison:

	Fx	N/ /1// \	Overturning
vel	(Kips)	Vx (Kips)	Moment (ft-k)
of	58.11	-	-
7	125.08	58.11	3990.20
6	104.61	183.18	10868.27
5	88.16	287.80	14389.83
4	82.29	375.96	17545.99
3	55.24	458.25	14356.95
2	38.79	513.49	11296.82
1	21.86	552.28	6627.40
und	0.00	574.14	-
	Total Ove	erturning Mo	ment= 79075.45


Level	FX	Vv (Vinc)	Overturning	
Level	(Kips)	Vx (Kips)	Moment (ft-k)	
Roof	86.86	-	-	
7	62.95	86.86	5964.94	
6	54.29	149.81	8888.20	
5	46.03	204.10	10204.86	
4	43.49	250.13	11673.57	
3	29.19	293.62	9199.08	
2	21.37	322.81	7101.89	
1	11.71	344.19	4130.25	
Ground	0.00	355.90	-	
	Total Ov	erturning Mo	ment= 57162.78	

Existing Seismic

Redesigned Seismic

Existing Seismic

Redesigned Seismic

Seismic Comparisons			
Existing	574.14 Kips		
Redesigned	355.90 Kips		
Difference	-218.24 Kips		
Percent Reduction	38% Reduction		

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Breadth Topic: Construction Management

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Cost Comparison:

ntity	Description	Ext. Mat. O&P	Ext. Labor O&P	Ext. Equip. O&P	Ext. Total O&P
SFCA	C.I.P. concrete forms	9266	5650	0	14916
O C.Y.	Structural concrete, 3000 psi	376290	0	0	376290
C.Y.	Structural concrete, 4000 PSI	55680	o	o	55680
014 Ea.	Concrete block	270311.14	0	0	270311.14
95 S.F.	Precast slab	731704.75	154521.5	59081.75	945308
Гоп	Reinforcing steel #4 to #7, footings	8450	5720	0	14170
Lb.	Reinforcing steel, #3 to #7, floors, walls	6.85	6.01	0	12.86
85 C.S.F.	Welded wire fabric 6 x 6 - W1.4 x W1.4	2577.52	4349.98	o	6927.5
L.F.	Concrete block, lintel	1339.4	2298.7	184.62	3822.72
ı		\$1455625.66	\$172546.19	\$59266.37	\$1,687,438.22

Existing Structural Costs

adiicicy	Description	EXT Plati Out	zati zaboi odi	Exti Equipi Oui	Exti iotal oal
	Structural concrete,				
200 C.Y.	3000 psi	466200	0	0	466200
130 SFCA	concrete forms	9266	5650	0	14916
0770 L.F.	Metal studs	200860.5	146472	0	347332.5
	Welded wire fabric 6 x				
039 C.S.F.	6 - W1.4 x W1.4	20624.15	34806.5	0	55430.65
	Reinforcing steel,				
0.1 Ton	footings, #4 to #7	16412.5	11110	0	27522.5
03880 S.F.	Metal decking	470576.4	78948.8	4155.2	553680.4
642 L.F.	W8x10	29802.3	11411.9	5237.98	46452.18
8 L.F.	W18x40	4205	368.3	124.7	4698
30 L.F.	W12x16	15370	2512.2	1155.4	19037.6
6.5 L.F.	W16x26	775.5	68.81	31.68	875.99
0.08 L.F.	W16x31	1134.52	92.97	42.77	1270.26
5 L.F.	W18x35	1587.5	158.75	53.75	1800
	Structural concrete,				
847 C.Y.	4000 PSI	446252	0	0	446252
2 L.F.	W10x45	6683	331.28	152.52	7166.8
6 L.F.	W12x87	5688	152.64	70.2	5910.84
	Reinforcing steel, #7				
4.3 Ton	to #11	2347.9	0	0	2347.9
otal		\$1697785.27	\$292084.14	\$11024.20	\$2,000,893.61

Redesigned Structural Costs

Structural Cost Comparisons				
Existing	\$1,687,438.22			
Redesigned	\$2,000,893.61			
Difference	+\$313,455.39			
Percent Difference	19% Increase			

Introduction

Existing Structure

Foundations

Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

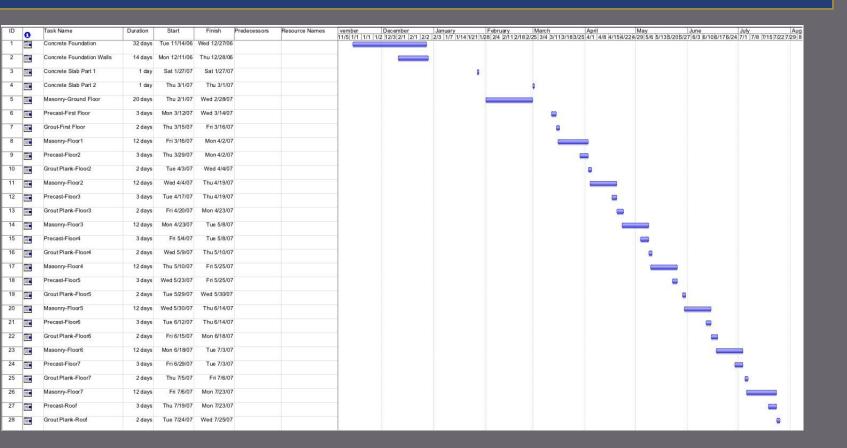
Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison


Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Shawn M. Brandt

Structural

Existing Structural Construction Time

0	Task Name	Duration	Start	Finish	vember	December	January 2 2/3 1/7 1/14	February 1/21 1/28 2/4 2/11 2/18 2	March 25 3/4 3/11 3/18 3/2	April 5 4/1 4/8 4/154/22	May 4/29 5/6 5/13 5/20 5/3	Jun
H	Concrete Foundation	36 days	Tue 11/14/06	Tue 1/2/07	[[]	12/3 2/1 2/1 2/2	2 2/3 1/1 1/14	1/21 1/20 2/4 2/112/102	23 3/4 5/115/105/2	5 4/1 4/0 4/154/22	. 4/29 5/6 5/15 5/20 S/.	21 01.
H	Concrete Foundation Walls	18 days	Tue 12/19/06	Thu 1/11/07								
	Concrete Slab Part 1	1 day	Fri 1/12/07	Fri 1/12/07			o s					
H	Concrete Slab Part 2	1 day	Wed 2/14/07	Wed 2/14/07				Q				
	Masonry-Ground Floor	25 days	Mon 1/15/07	Thu 2/15/07			*					
	Deck-Floor1	3 days	Fri 2/16/07	Tue 2/20/07				—				
	Slab-Floor 1	2 days	Wed 2/21/07	Thu 2/22/07				<u>*</u>				
	Framing-Floor 1	5 days	Fri 2/23/07	Thu 3/1/07				*				
	Deck-Floor2	3 days	Fri 3/2/07	Tue 3/6/07					*			
	Slab-Floor2	2 days	Wed 3/7/07	Thu 3/8/07					\$			
	Framing-Floor3	5 days	Fri 3/9/07	Thu 3/15/07					—			
	Deck-Floor3	3 days	Fri 3/16/07	Tue 3/20/07					*			
	Slab-Floor3	2 days	Wed 3/21/07	Thu 3/22/07					<u></u>			
	Framing-Floor3	5 days	Fri 3/23/07	Thu 3/29/07						h		
	Deck-Floor4	3 days	Fri 3/30/07	Tue 4/3/07						_		
	Slab-Floor4	2 days	Wed 4/4/07	Thu 4/5/07						*		
	Framing-Floor4	5 days	Fri 4/6/07	Thu 4/12/07								
	Deck-Floor5	3 days	Fri 4/13/07	Tue 4/17/07						*		
	Slab-Floor5	2 days	Wed 4/18/07	Thu 4/19/07						\$		
	Framing-Floor5	5 days	Fri 4/20/07	Thu 4/26/07							1	
H	Deck-Floor6	3 days	Fri 4/27/07	Tue 5/1/07						ì	_	
	Slab-Floor6	2 days	Wed 5/2/07	Thu 5/3/07							<u>*</u>	
	Framing-Floor6	5 days	Fri 5/4/07	Thu 5/10/07							_	
	Deck-Floor7	3 days	Fri 5/11/07	Tue 5/15/07								
	Slab-Floor7	2 days	Wed 5/16/07	Thu 5/17/07							*	
	Framing-Floor7	5 days	Fri 5/18/07	Thu 5/24/07							*	
	Deck-Roof	3 days	Fri 5/25/07	Tue 5/29/07							*	h
	Slab-Roof	2 days	Wed 5/30/07	Thu 5/31/07								ð

Redesigned Structural Construction Time

Exi

Structural Construction Time Comparison				
isting	192 Days			
designed	156 Days			
ference	-36 Days			
rcent Difference	19% Reduction			

Introduction

Existing Structure

Foundations

Floor system
Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Conclusions:

Depth Topic

Advantages:

-Successfully reduced weight and

-Seismic forces

Disadvantages:

-Partition walls must be reassigned as load bearing

-Columns placed in open areas

Conclusions:

Construction Management Breadth

Advantages:

-Faster construction time

Disadvantages:

-Greater cost of construction

Introduction

Existing Structure

Foundations
Floor system

Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Acknowledgments

Baker, Ingram, and Associates:

Larry Baker
Tom Woods
Mary Longenecker

Infinity Structures:

Jeffrey Hundley

Abel Consulting Engineers:

Brian Abel Nate Boczkowski

Pettinaro:

William Netta

The Pennsylvania State University:

Professor M. Kevin Parfitt Dr. Richard Behr Professor Robert Holland

A special thank you to my family, friends, and classmates for their continued and ongoing support

Introduction

Existing Structure

Foundations

Floor system
Gravity system

Lateral system

Proposal and Problem Statement

Depth Topic

Breadth Topics

Construction Management

Sustainability

Structural Redesign

Gravity System

Floor System

Lateral System

Weight Comparison

Seismic Comparison

Construction Management Breadth

Cost Comparison

Schedule Comparison

Conclusions – Acknowledgements – Questions & Comments

Questions & Comments